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Vertex overload breakdown in evolving networks
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We study evolving networks based on the Baraba´si-Albert scale-free network model with vertices sensitive
to overload breakdown. The load of a vertex is defined as the betweenness centrality of the vertex. Two cases
of load limitation are considered, corresponding to the fact that the average number of connections per vertex
is increasing with the network’s size~‘‘extrinsic communication activity’’!, or that it is constant~‘‘intrinsic
communication activity’’!. Avalanchelike breakdowns for both load limitations are observed. In order to avoid
such avalanches we argue that the capacity of the vertices has to grow with the size of the system. An
interesting irregular dynamics of the formation of the giant component~for the intrinsic communication
activity case! is also studied. Implications on the growth of the Internet are discussed.

DOI: 10.1103/PhysRevE.65.066109 PACS number~s!: 89.75.Fb, 89.75.Hc
o
nd

ss
ur
in
on
is
r

ow
iti

vo
or
o

er
r
n

ow

th
a
d

ng
l f
e

ks
k
by

ne
er

n
er-
the

ned
for

on-

.

rg-

,
al
to,
of

by
-

I. INTRODUCTION

Natural and man-made systems for any kind of transp
tation or communication often take the form of large a
sparse networks. Examples include neural networks@1#,
computer networks@2,3#, power grids@4#, biochemical net-
works @5#, and so on. Apart from their inherent randomne
these networks usually have some self-induced struct
which influences the flow of transport and robustness aga
congestion or breakdown in the network. A very comm
and conspicuous structure of many real-world networks
power-law distribution of the degree~defined as the numbe
of directly connected neighbors of a vertex!, a structure often
referred to as scale freeness@2,3,6,7#. In practice, this means
that a few vertices are much more central in the network fl
than the others, and hence that the network is very sens
to failure of these important vertices@2,8,9#. A limited capac-
ity of the vertices can pose a serious limitation on the e
lution of a growing network. This is especially serious f
networks with an emerging scale freeness, where the m
loaded ~and thus most important vertices! are far more
loaded~important! than average.

Avalanche of breakdowns through the network is a s
ous threat when vertices are sensitive to overloading. A
cent example is the blackout of 11 US states and two Ca
dian provinces on the 10th August 1996@13#. This and
similar examples serve as motivation for the study of h
the extent and dynamics of the avalanches@10# are depen-
dent on the network structure. Of particular interest is
overload breakdown problem in time evolving networks—
the network structure changes the load is redistributed, an
this is not accounted for it may trigger a vertex breaki
avalanche. In the present paper we propose a mode
breakdowns triggered by changing load in an evolving n
work. In this way the present work differs from earlier wor
on overload breakdown avalanches taking a fixed networ
the starting point: Watts@11# modeled rare event cascades
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letting individuals~vertices! change their behavior~a binary
variable! if a threshold fraction of their neighbors have do
that. Moreno, Go´mez, and Pacheco investigated the fib
bundle model@12# on scale-free networks.

To investigate the time evolution of networks with a
emerging power-law degree distribution sensitive to ov
load, we use the standard model for such networks—
Barabási-Albert ~BA! model @14,15#, but with a maximum
load capacity assigned to each vertex. The load is defi
through the betweenness centrality, a centrality measure
communication and transport flow in a network@16–18#. If a
vertex is overloaded, it breaks down by becoming disc
nected from its neighbors.

II. DEFINITIONS

In the following, we consider networks as graphsG
5(V,E) whereV is the set of vertices, andE is the set of
unweighted edges~unordered pairs of vertices!. Multiple
edges between the same pair of vertices are not allowed

A. Growth: Barabási-Albert model of scale-free networks

The standard model for evolving networks with an eme
ing power-law degree distribution is the Baraba´si-Albert
model. In this model, starting fromm0 vertices and no edges
one vertex withm edges is attached iteratively. The cruci
ingredient is a biased selection of what vertex to attach
the so called ‘‘preferential attachment:’’ In the process
adding edges, the probabilityPu for a new vertexv to be
attached tou is given by@19#

Pu5
ku11

(
wPV

~kw11!

, ~1!

whereku is the degree of the vertexu. We measure the time
t as the total number of added edges, which is different
factorm from Refs.@14,15# wheret is measured by the num
ber of added vertices.
©2002 The American Physical Society09-1
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B. Load and capacity

To assess the load on the vertices of a communica
network, or any network where contact between the two v
tices are established through a path in the network, a c
mon choice is the betweenness centrality@16#: Let v be a
vertex inV, then the betweenness centralityCB(v) is defined
as

CB~v !5 (
(w,w8)

sww8~v !

sww8

, ~2!

where the summation is over all pairs of vertices such t
w5” w8 and w,w85” v, sww8 is the number of geodesic
~shortest paths! betweenw andw8, andsww8(v) is the num-
ber of geodesics betweenw and w8 that passesv. The be-
tweenness centrality thus measures how many geodesics
a certain vertex.

We below give a thorough motivation for the use of t
betweenness centrality given by Eq.~2! as a load measure
and introduce two cases of assigning maximum load to e
vertex. Suppose thatL is the set of pairs of vertices with
established communications through shortest paths at a g
instant@20#. Then letl(v) denote theload of v defined as
the number of geodesics that pass throughv. If the pair
(w,w8)PL has many geodesics it contributes tol(v) with
the fractionsww8(v)/sww8 of the geodesics that passesv.
Sincel(v) is of course highly dependent on the choice ofL,
we assume the effective load to be the average

^l~v !&V5
1

uVu (
LPV

l~v !, ~3!

whereV is an ensemble ofL ~this is the assumption behin
most usage of the betweenness centrality, although sel
stated explicitly!. To proceed, we restrictV in two ways, one
termed extrinsic communication activity~ECA! and the other
one called intrinsic communication activity~ICA!:

VECA5$L:uLu5AECA~N21!~N22!%, ~4a!

V ICA5$L:uLu5AICA~N21!%, ~4b!

whereAECA and AICA are constants independent ofN. This
means that an element ofVECA is a set ofAECA(N21)(N
22) pairs of distinct vertices chosen uniformly at rando
~similarly for V ICA). In the first case of ECA, Eq.~4a!, the
average number of connections to a specific vertex is pro
tional to the system sizeN. In the second case of ICA, Eq
~4b!, the average number of connections per vertex is c
stant. If we averagel(v) over the respective ensembles w
obtain

^l~v !&VECA
5

1

uVECAu (
LPVECA

(
(w,w8)PL

sww8~v !

sww8

5AECA CB~v !, ~5a!
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^l~v !&V ICA
5

1

uV ICAu (
LPV ICA

(
(w,w8)PL

sww8~v !

sww8

5
AICA

N22
CB~v !'

AICA

N
CB~v !. ~5b!

The results follow immediately from the definitions of th
ensembles in Eq.~4!: VECA is defined so that a pair of ver
tices (w,w8) occurs with a probabilityAECA; for V ICA the
same probability isAICA /(N22).

Now we introduce a capacity, or maximum valu
l(v)max on the load that is the same for every vertex. Fro
Eq. ~5! we see that this is equivalent to having a const
maximum betweennessCB

max in the ECA case, and to have
linearly growing CB

max(N)5NcB
max in the ICA case, where

cB
max is the parameter independent ofN @21#. If the load on a

vertex v exceeds this assigned value of maximum load,
consider the vertexv overloaded, and all edges connecting
v are deleted. However, the vertexv is not removed and is
still a member ofV and can thus be connected to in th
future. After removingv ’s edges, the load on other vertice
might exceed the maximum load, so we recalculateCB of all
vertices and remove edges of newly overloaded vertices.
above procedure is iterated until no vertices are overload

To further motivate the study of the two cases ECA a
ICA, we can consider the usage of a growing computer n
work. As the network becomes larger the amount of intere
ing information for a user becomes larger, so this mechan
contributes to an average increase of the others to comm
cate with activity per user, an increase proportional toN
corresponds to the ECA case. Communicating takes ti
and assuming the time a user is willing to spend commu
cating restricts the number of communicators to a cons
we have the ICA case. In reality both the above mechanis
are at work so one can expect the real behavior to be fo
between the ECA and ICA limits.

C. Quantities for measuring network functionality

To measure the network functionality we consider thr
quantities, the number of edgesL, inverse geodesic length
l 21, and the size of the largest connected subgraphS, all
described in the following: For the original BA model th
number of edges increases linearly asL(t)5t ~note that one
edge is added in unit time!. But if an overload breakdown
occurs in the systemL decreases, making it a suitab
simplest-possible measure of the network functionality. In
functional network a large portion of the vertices shou
have the possibility to connect to each other. In percolat
studies of random networks one often usesS to define the
system as ‘‘percolated’’~or functioning!, when the size of the
largest connected subgraphS scales asN @22#. One of the
characteristic features of the BA model networks, as wel
many real-world communication networks, is an logarithm
cally increasing average geodesic lengthl:

ł[^d~v,w!&[
1

N~N21! (
vPV

(
wPV\$v%

d~v,w!, ~6!
9-2
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VERTEX OVERLOAD BREAKDOWN IN EVOLVING NETWORKS PHYSICAL REVIEW E65 066109
whered(v,w) is the length of a geodesic betweenv andw.
As the average geodesic length is infinite when the netw
is disconnected~as could be the case when an overlo
breakdowns has occurred! we prefer studying the averag
inverse geodesic length@23#:

l 21[ K 1

d~v,w!L [
1

N~N21! (
vPV

(
wPV\$v%

1

d~v,w!
, ~7!

which has a finite value even for the disconnected grap
one defines 1/d(v,w)50 in the case that no path connectsv
andw.

III. EXTRINSIC COMMUNICATION ACTIVITY

A single run for the ECA load limit typically follows the
time development shown in Fig. 1. The system grows exa
like the BA model untilCB5CB

max for some vertex~this hap-
pens att'840 in Fig. 1!. In this initial stage, the averag
inverse geodesic length approaches its maximum value
soon, andS and L grow linearly in time as expected. Afte
reaching its early maximum (t'300 in Fig. 1! l 21 starts to
decrease slowly since the average geodesic length incre
in a connected growing network. As the network evolv
more vertices are overloaded but those breakdowns of o
loaded vertices in this stage do not spread across the net
but are soon recovered without causing severe damage t
whole network (840&t&2200 in Fig. 1!. Finally, through a
series of avalanches the system breaks down into small f
ments of low average degree, characteristic for the largt
steady state~this happens aroundt'2200 in Fig. 1!. Such a
behavior has a natural explanation: In the emerging sc
free network~for t&1000 in Fig. 1! the vertices with highes
CB are also those with the highest degree@9#—when break-
down occurs the average degree decreases. But in a g
with fewer edges the geodesics must overlap to a larger
tent, increasing theCB for less central vertices as well. A
long as only few vertices are dominant the breakdown
limited to these top-end vertices. When the average degre
low enough ~so the fraction of central vertices is hig
enough! the system looses the large connected compon

FIG. 1. The time evolution ofS, L, andl 21 for a typical run of
the ECA case withCB

max5700 andm0/25m512. The curves dis-
play S, L, and l 21 rescaled by their maximal values,Smax5159,
Lmax51133, andl max

21 50.2914. In the inset the whole network
t55000 ~except zero-degree vertices! is shown.
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and will never recover. The large-t equilibrium is character-
ized by many disconnected subgraphs of a low average
gree. In a chainlike subgraph of sizes the maximal between-
ness is of the order;s2/2. Accordingly, when a new vertex
joins two chain-like subgraphs of similar size the betwee
ness will increase by a factor around 4, which in many ca
is enough to cause a breakdown~in Fig. 1 the average timet
between breakdowns ist'5.8 for 6000<t<7000).

From histograms of the betweenness and the average
gree we can get another perspective on the breakdown.
ure 2 represents the same model parameters as Fig. 1, bu
histograms are sampled over 500 independent runs. At
earliest timet51000—around the point when first verte
reaches the maximal load (CB

max5700)—the betweennes
distribution, as well as the degree distribution, shows
emerging power-law form. When vertices of high betwee
ness and degree breakdown~so the average degree ge
lower!, the number of vertices with an intermediate betwee
ness increases, as shown in Fig. 2~a! at t52000, close to the
final fragmentation. After the final fragmentation has o
curred@ t55000 in Fig. 2~a!#, the network approaches stead
state and its structure does not change in time significan
and the fraction of vertices with largerCB is reduced@com-
pare t52000 andt55000 in Fig. 2~a!#. In Fig. 2~b!, the
change of the degree distribution in time is displayed. W
increasingt the maximum degree decreases, but characte
tic to all configurations before the final breakdown@at t
55000 in Fig. 2~a!# is the existence of a peak in the hist
grams at an intermediatekv .

If the preferential attachment in the BA model’s gene
tive algorithm is replaced by a purely random selection
vertices to attach to@i.e., Eq.~1! is replaced byPu51/N# the
resultant network is known to have an exponentially tai
degree distribution@15#. Apart from probably being a rel-
evant model for some evolving networks with an emerg
exponential degree distribution, the randomly attaching
model can serve as a background for studying the effect
preferential attachment.

Figure 3 shows a typical run with the same parame
values as those of Fig. 1 but with random instead of pre
ential attachment. Very large vertex breaking avalanches
known to occur in BA model networks under other load co
ditions ~the fiber bundle model@12#!. Thus it is no surprise
that the network breaks down much faster when it is form

FIG. 2. Histograms for ~a! the normalized betweennes
CB /CB

max and~b! the degreekv for CB
max5700 andm5m0/2512 at

times t51000, t52000, andt55000.
9-3



th
l

ve
w

n

-
ef
on

a
im
r-
o

s

t i
Fi

c

ing

s
de-
they
om
too

ices

ing
as-
use

s

r of
h a

e
xi-

ith

ith

nt
tho

PETTER HOLME AND BEOM JUN KIM PHYSICAL REVIEW E65 066109
by preferential than random attachment. For example,
decay fromS̃50.8 to S̃50.2 occurs in the the time interva
Dt'550 for random attachment in Fig. 3 whereasDt'190
is found for preferential attachment in Fig. 1. The relati
robustness from random attachment is also consistent
the fact that Erdo˝s-Rényi ~ER! @24# model networks are more
robust against vertex attack~most harmful removal of verti-
ces! than the BA model networks@9#.

The BA model with random attachment is not equivale
to the ER model in that all vertices of the former~except the
initial m0) have degreekv>m. However, the vertices of ar
bitrary large importance present in the BA model with pr
erential attachment are—just as in the ER model—g
when the attachment is random. Thus, since both vertex
tack and overload breakdown concern disabling the most
portant vertices, the similarity in behaviors is of little su
prise. The relative robustness of the networks with rand
attachment is also reflected in the maximal values ofS and
L: Smax5159 andLmax51133 in Fig. 1, in comparison
with Smax5207 andLmax52030 in Fig. 3. A more interesting
feature of the BA model networks with random attachmen
the lack of the second regime discussed in the context of
1, where the avalanche is limited and the network is able
recover. When the attachment is random the first avalan

FIG. 3. A typical run of the BA model with random attachme
instead of preferential attachment. The parameter values are
of Fig. 1. The curves displayS, L, andl 21, rescaled by their maxi-
mal values (Smax5207, Lmax52030, andl max

21 50.2929).
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almost always coincides with the maximumS ~and L). Be-
fore the first avalanche some vertices breaks without mak
other vertices overloaded. This ability to recuperate~for the
case with the preferential attachment! can be interpreted a
follows: When the most central vertex is overloaded and
tached, the other vertices are not more loaded than that
can share the load of the additional geodesics. With rand
attachment, once the first vertex breaks, the others are
close in centrality to escape from being overloaded.

To investigate them dependence of̂S& we average over
more than 100 independent runs at various values ofm ~the
number of edge addings for each new vertex!. With an in-
creasing average degree, the load is split over more vert
and thus the network becomes increasingly robust~this effect
is dominant for 1<m<20 in Fig. 4!. But at the same time, a
larger m also means that a vertex, in the process of add
isolated vertices to a connected subgraph will get an incre
ingly high betweenness. These two competing effects ca
the maximum of̂ S& at an intermediatem(m520 in Fig. 4!.
The minimum of^S& nearm527 in Fig. 4 can be explained
as follows: WhenCB

max5m(m21), a new vertex become
overloaded when it attaches its last edge, limitingS to m
21. In Fig. 4, this minimum occurs whenm527 since
m(m21)'CB

max(5700).

IV. INTRINSIC COMMUNICATION ACTIVITY

ICA, corresponding to the case the average numbe
connections per vertex is constant, is implemented throug
linearly increasing maximum betweenness loadCB

max(t)
5cB

maxN(t). The m dependence of the time evolution in th
ICA case is shown in Fig. 5. Unlike the ECA case the ma
mum load ism dependent@CB

max5cB
maxN5cB

max(m01t/m)#,
which causes the increase of^S& for small and decreasingm
in Fig. 5. Just as in the ECA case the networks grown w
the ICA limit are most robust for an intermediatem ~with
cB

max55 as in Fig. 5 the most robust networks are those w

se
l-
st
FIG. 4. Them dependence of the time deve
opment of ^S&—the average size of the large
connected subgraph for the ECA case withCB

max

5700, andm052m.
9-4
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FIG. 5. Them dependence of the time deve
opment of ^S&—the average size of the large
connected subgraph for the ICA case withcB

max

55, andm052m.
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m5mmax'10). The mechanism behind this seemingly sim
lar behavior is, however, entirely different from the EC
case. The avalanching breakdown follows the same pat
as the ECA case~shown in Fig. 1!, but not the decrease i
performance form.mmax: For some runs a giant compone
~a connected subgraph of the order of the whole system! fails
to form, and the network stays disconnected, similarly to
large-t equilibrium of the ECA case. The frequency of ru
where no giant component is formed increases withm, caus-
ing the decrease of network functionality form.mmax. Two
runs, one where a giant component is formed and one w
it is not, are shown in Fig. 6. As seen in Fig. 6~a!, the ava-
lanche in the ICA case can be as dramatic as in the E
case. This is expected since the relative increase of the m
mum load,DCB

max/CB
max, during the avalanche that lasts fo

Dt, is given by DCB
max/CB

max'Dt/t, which becomes very
small ast increases. In other words, the increase of the ma
mum load during the avalanche is too slow to stop the glo
scale of breakdowns.

The existence of avalanche of breakdowns in the E
case appears to be inevitable due to the fixed maximum
CB

max: As the network becomes larger more vertices are ov

FIG. 6. Two runs with the ICA load limit and parameter valu
m5m0/2512 andcB

max55. In run ~a! a giant component forms, in
~b! no giant component emerges. The curves displaysS, L, andl 21

rescaled by their maximal values in~a! (Smax5876, Lmax54354,
and l max

21 50.2170).
06610
-

rn

e

re

A
xi-

i-
al

A
ad
r-

loaded eventually, which leads to the situation that less ed
should hold increased loads. In the ICA case, on the o
hand, it is a very interesting question that why there has to
an avalanche at all, or, why a stable large connected com
nent does not form. First we note that for a connected gr

(
vPV

CB~v !5 (
wPV\$v%

@d~v,w!21#5N~N21!~ l 21!,

~8!

which yields

^CB~v !&5~N21!~ l 21!<max
vPV

CB~v !. ~9!

Consequently, Eq.~9! implies that the load of the vertex with
the largest load in the network increases at least as fas
approximatelyNl before the giant component becomes u
stable. Since the BA network is well known to exhibit th
small-world behavior thatl } logN @14,15#, we conclude that
in both ECA and ICA cases the giant component becom
unstable asN becomes larger. The above argument sugge
that to avoid the overload breakdowns theCB

max should scale
at least asNa with a.1 and that ifa<1 ~e.g.,a50 for ECA
and a51 for ICA cases in this paper! the giant componen
should break down asN becomes larger. If we map this bac
to the original definition of load~see Sec. II B!, we see that
even in the ICA case the capacityl(v)max must grow~to be
precise it has to grow at least asNa21, a.1). If the
growth of the network is exponential in time~as has been the
case for the Internet@27#! the growth of the server capacitie
also has to be exponential. Fortunately, this has so far b
the case.

Why does a giant component form only sometimes in
ICA case? Is it a long chain of events or just a singu
attachment that establishes a giant component? To un
stand this we need some kind of criterion for a giant com
nent to have formed. The basis of such a criterion is thaS
scales likeN ~we choose thatS should grow at least asN/2)
9-5
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FIG. 7. ~a! The fractionPGC of runs that forms a giant component when the network at timetstart equals that of Fig. 6~a! and~b!. A giant
component is said to have formed if the condition~10! is fulfilled, i.e.,S.N/2 when 864<t<1728.~b! The network of Fig. 6~a! during the
formation of a stable kernel 175<t<225 of many vertices sharing the load.~c! The network of Fig. 6~b! during the same time. Vertices o
nonzero betweenness are indicated by filled circles. Vertices of zero degree are not displayed. Graph drawing was aided by thePAJEK package
@25#.
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over a certain interval. The problem is now to fix the inte
val: The lower limit should be quite high, so the system ha
time to form a giant component. At the same time the up
limit must be set before the avalanching breakdowns occ
and this time decreases with decreasingm ~see Fig. 5!. As a
trade-off we say that a giant component has formed if

S.
N

2
in the interval 3m0<N~ t !<6m0 , ~10!

whereN(t)5m01t/m ~and we choosem052m). Now we
can monitor the ‘‘basin of attraction’’ of the formation of
giant component in Fig. 6. Figure 7 shows the fractionPGC
of runs that forms a giant component when the network
time tstart equals that of Figs. 6~a! and 6~b!. From this we see
that over a time of aroundDt550 the formation of a gian
component~GC! goes from a probabilityPGC'0.3 to PGC
'0.8; a favorable sequence of attachments overDt550 is
thus needed to form a stable kernel, or starting point, for
formation of a giant component. The probability of a stab
kernel to form decays fast witht going from;20% to;1%
during the initial 500 time steps. In Fig. 7~b! we can see the
formation of a stable kernel, that raisesPGC from 0.3 to 0.8,
whereas Fig. 7~c! shows the same time evolution in a ca
where no giant component forms. In the formation of t
stable kernel we see many attachments to the conne
06610
-
e
r
s,

t

e

ed

component, and fewer attachments to isolated vertices.
attachment to the existent connected component work
favor of the establishment of a giant component in two wa
~1! The average degree of the connected component is
creased since both more edges are included and less iso
vertices are joined. This makes more possible geodesics
enables more vertices to share the load.~2! The raise of
average degree increases the probability of attachment to
connected component.

The reason why we do not observe any emerging g
components in the large-t limit is evident from Fig. 8. In the
large chainlike subgraphs@see Fig. 8~b!# dominant in the
large-t limit, there are many vertices of high betweenne
Joining two such graphs gives a large increase in betwe
ness to most vertices, as opposed to Fig. 8~a! where an ad-
ditional load can be shared by many vertices, and the m
shorter average geodesic length leads to a much lower
increase ofCB . A stable kernel is of course not forbidden
form, but the probability of formation decreases with tim
@as seen in Fig. 7~a!#. Whether or not the probability of a
stable kernel to form ast→` is less than one is an interes
ing open question.

To proceed we investigate the effect of preferential atta
ment for the formation of a giant component. For the rand
attachment case giant components form very seldom, the
son is that the stable kernels are more likely to form w
-
s-
FIG. 8. ~a! The largest con-
nected subgraph att5385 in Fig.
6~a!. ~b! The largest connected
subgraph att510 000 in Fig. 6~b!.
~c! shows scatter plot of between
ness vs degree in the graphs di
played in~a! and ~b!.
9-6
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preferential attachment, since then attachment are d
mainly to highly connected areas that are likely start
points for a stable kernel. Figure 9 shows the probability
formation of a giant component@by the condition Eq.~10!#
for preferential and random attachment. For growingm and
random attachment the probability of giant component f
mation PGC is strictly decreasing. This can be understo
since more and more isolated vertices become connecte
m increases, thus leading to the time development see
Fig. 7~c! and discussed above. For preferential attachm
the decrease occurs atm*8. In the large-m limit, the prob-
ability of the momentary higher-than average increase of
average degree needed for the formation of a stable ke
decreases; thus the decrease for largem.

V. SUMMARY AND CONCLUSIONS

We have used the BA model with the preferential atta
ment and investigated the development of networks wh
the vertices might break down due to overload. The load w
defined in terms of the betweenness centrality by careful
guments. We considered two cases of load limitation: O
corresponding to the fact that the average number of con
tions per vertex is increasing with the number of vertices

FIG. 9. The fractionPGC of runs that forms a giant componen
for preferential and random attachment as a function ofm. The
decay of the preferential-attachment curve asm→0 is due to early
avalanches@the increase of such for decreasingm makes the rule of
thumb criterion Eq.~10! inapplicable form,5, thus these are no
shown#.
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the network~the ECA case!, and one where the average num
ber of connections per vertex is constant~the ICA case!.

We find that for both the ECA and ICA cases overloadi
may cause breakdown avalanches. At a critical point th
avalanches will fragment the network completely and it w
never recover. The mechanism is that the vertices with
highest loads are also the vertices with the highest degr
and accordingly removing such vertices will thus decre
the average degree mostly and increase the betweenne
other vertices maximally. In the large time equilibrium w
find that the network consists of many isolated chainl
clusters.

Even in the seemingly less restricted ICA case we fi
that the network will eventually become fragmented, a
thus that for the network to be connected the capacity of
vertices to relay connections have to increase with the siz
the network. Even if the congestion of computer netwo
traffic will result in a slowing down of the servers, rath
than a complete breakdown, we anticipate that this will b
problem in the Internet if the exponential increase of co
puter performance stalls but not the growth of the numbe
Internet sites. Overflow control is implemented in ma
communication networks, such as telecommunication n
works@26# and to some degree in large-scale Internet rout
protocols such as the Border Gateway protocol@27#. We sup-
pose that these kind of overload control strategies can
optimized, and centers of potential overload be removed b
careful study of the network geometry.

In the ICA case we find that a giant component not n
essarily forms every run, and that a particularly stable c
figuration has to be formed during a short period of time
trigger the emergence of a giant component. Furtherm
preferential attachment greatly increases the probability o
giant component to form compared to random connecti
This might be a further explanation to preferential attac
ment in natural systems such as the metabolic networks
cussed in Ref.@28#.

ACKNOWLEDGMENT

The authors acknowledge support from the Swedish Na
ral Research Council through Contract No. F 5102-659/20
,

ev.
.

E

@1# For example the graph structure of the neural network of
nematode wormC. Elegansis studied in: L. A. N. Amaral, A.
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