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Vertex overload breakdown in evolving networks
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We study evolving networks based on the Basi#dbert scale-free network model with vertices sensitive
to overload breakdown. The load of a vertex is defined as the betweenness centrality of the vertex. Two cases
of load limitation are considered, corresponding to the fact that the average number of connections per vertex
is increasing with the network’s sizéextrinsic communication activity}, or that it is constant“intrinsic
communication activity). Avalanchelike breakdowns for both load limitations are observed. In order to avoid
such avalanches we argue that the capacity of the vertices has to grow with the size of the system. An
interesting irregular dynamics of the formation of the giant comportémt the intrinsic communication
activity case is also studied. Implications on the growth of the Internet are discussed.
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[. INTRODUCTION letting individuals(vertices change their behaviga binary
variable if a threshold fraction of their neighbors have done
Natural and man-made systems for any kind of transporthat. Moreno, Gmez, and Pacheco investigated the fiber
tation or communication often take the form of large andbundle mode[12] on scale-free networks.
sparse networks. Examples include neural netwdrks To investigate the time evolution of networks with an
computer network$2,3], power grids[4], biochemical net- emerging power-law degree distribution sensitive to over-
works[5], and so on. Apart from their inherent randomnessload, we use the standard model for such networks—the
these networks usually have some self-induced structurdarabai-Albert (BA) model[14,15, but with a maximum
which influences the flow of transport and robustness againd@ad capacity assigned to each vertex. The load is defined
congestion or breakdown in the network. A very commonthrough the betweenness centrality, a centrality measure for
and conspicuous structure of many real-world networks is &ommunication and transport flow in a netw¢i6—-18. If a
power-law distribution of the degreelefined as the number vertex is overloaded, it breaks down by becoming discon-
of directly connected neighbors of a vertea structure often nected from its neighbors.
referred to as scale freend€53,6,7. In practice, this means
that a few vertices are much more central in the network flow
than the others, and hence that the network is very sensitive
to failure of these important vertic¢®,8,9. A limited capac- In the following, we consider networks as grapfs
ity of the vertices can pose a serious limitation on the evo—=(Vv,E) whereV is the set of vertices, anfl is the set of
lution of a growing network. This is especially serious for ynweighted edgesunordered pairs of verticesMultiple

networks with an emerging scale freeness, where the mosidges between the same pair of vertices are not allowed.
loaded (and thus most important vertigesre far more

loaded(importan} than average. .

Avalanche of breakdowns through the network is a seri- A. Growth: Barabasi-Albert model of scale-free networks
ous threat when vertices are sensitive to overloading. A re- The standard model for evolving networks with an emerg-
cent example is the blackout of 11 US states and two Canang power-law degree distribution is the BarabAlbert
dian provinces on the 10th August 19963]. This and  model. In this model, starting fromn, vertices and no edges,
similar examples serve as motivation for the study of howone vertex withm edges is attached iteratively. The crucial
the extent and dynamics of the avalanch&g| are depen- ingredient is a biased selection of what vertex to attach to,
dent on the network structure. Of particular interest is thehe so called “preferential attachment:” In the process of

overload breakdown problem in time evolving networks—asadding edges, the probabilify, for a new vertexv to be
the network structure changes the load is redistributed, and #ttached tau is given by[19]

this is not accounted for it may trigger a vertex breaking

II. DEFINITIONS

avalanche. In the present paper we propose a model for LT
breakdowns triggered by changing load in an evolving net- Py= ' @
work. In this way the present work differs from earlier works WEV (kwt1)

on overload breakdown avalanches taking a fixed network as
the starting point: Wattgl1] modeled rare event cascades by
wherek,, is the degree of the vertax We measure the time
t as the total number of added edges, which is different by
*Electronic address: holme@tp.umu.se factorm from Refs.[14,15 wheret is measured by the num-
TElectronic address: beomjun@ajou.ac.kr ber of added vertices.
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B. Load and capacity

Ty (V)
To assess the load on the vertices of a communication <7\(U)>Q.CAZW A EQ: 2 T
network, or any network where contact between the two ver- CAL Aetea ww)ed Tww
tices are established through a path in the network, a com- Aca Acca
mon choice is the betweenness centrafitg]: Let v be a =N=2 Ce(v)~—Ca(v). (5b)
vertex inV, then the betweenness central@y(v) is defined
as The results follow immediately from the definitions of the
T (V) ensembles in Eq4): Qgca is defined so that a pair of ver-
Celv)= > ———, (2)  tices (wv,w') occurs with a probabilityAgca; for Qica the
(ww')y  Oww same probability i ca/(N—2).

Now we introduce a capacity, or maximum value,
where the summation is over all pairs of vertices such thak (v)™® on the load that is the same for every vertex. From
w#w’ andw,w’#v, o, iS the number of geodesics Eqg. (5) we see that this is equivalent to having a constant
(shortest pathsbetweerw andw’, ando,, (v) is the num-  maximum betweennessf® in the ECA case, and to have a

ber of geodesics betweamandw’ that passes. The be- linearly growing C§*{N)=Ncg™ in the ICA case, where
tweenness centrality thus measures how many geodesics Pag®*is the parameter independentf21]. If the load on a
a certain vertex. vertexv exceeds this assigned value of maximum load, we

We below give a thorough motivation for the use of the consider the vertex overloaded, and all edges connecting to
betweenness centrality given by EQ) as a load measure, ; are deleted. However, the vertexis not removed and is
and introduce two cases of assigning maximum load to eacki|l a member ofV and can thus be connected to in the
vertex. Suppose that is the set of pairs of vertices with fytyre. After removingy’s edges, the load on other vertices
established communications through shortest paths at a 9iVeRight exceed the maximum load, so we recalcuGygeof all
instant[20]. Then letA(v) denote thdoad of v defined as  yertices and remove edges of newly overloaded vertices. The
the number of geodesics that pass throughif the pair  apove procedure is iterated until no vertices are overloaded.
(w,w’") e A has many geodesics it contributesht@) with To further motivate the study of the two cases ECA and
the fractiono,, (v)/oww Of the geodesics that passes |CA, we can consider the usage of a growing computer net-
Since\ (v) is of course highly dependent on the choice\of  work. As the network becomes larger the amount of interest-
we assume the effective load to be the average ing information for a user becomes larger, so this mechanism

contributes to an average increase of the others to communi-
1 cate with activity per user, an increase proportionalNto
(A (v))a= ) AEE:Q M), ©) corresponds to the ECA case. Communicating takes time,
and assuming the time a user is willing to spend communi-
cating restricts the number of communicators to a constant

where() is an ensemble of (this is the assumption behind we have the ICA case. In reality both the above mechanisms

most usage .Of the betweenness cer.1tra.|ity, although seldog}e at work so one can expect the real behavior to be found
stated explicitly. To proceed, we restri€d in two ways, one between the ECA and ICA limits

termed extrinsic communication activi(ifCA) and the other

one called intrinsic communication activityCA):
C. Quantities for measuring network functionality

Qeca={A:|A|=AecaA(N=1)(N—-2)}, (4a) To measure the network functionality we consider three
guantities, the number of edgés inverse geodesic length
Qea={A:|A|=Aca(N-1)} (4b) /71, and the size of the largest connected subgrapall

described in the following: For the original BA model the
number of edges increases linearlylg$) =t (note that one
edge is added in unit timeBut if an overload breakdown
occurs in the systeni decreases, making it a suitable
simplest-possible measure of the network functionality. In a
functional network a large portion of the vertices should
have the possibility to connect to each other. In percolation

where Agca and Aicp are constants independent I9f This
means that an element 6., is a set ofAgca(N—1)(N
—2) pairs of distinct vertices chosen uniformly at random
(similarly for Q,ca). In the first case of ECA, Eq4a), the
average number of connections to a specific vertex is propo

tional to the system sizh. In the secqnd case of ICA’. Eq. studies of random networks one often u&® define the
(4D), the average number of connections per vertex is Conéystem as “percolated(or functioning, when the size of the
stan'g. If we averaga (v) over the respective ensembles we largest connected subgraghscales adN [22]. One of the
obtain characteristic features of the BA model networks, as well as
many real-world communication networks, is an logarithmi-
\ 1 O (V) cally increasing average geodesic lenfggth
NV age, O]

AeQgca (ww')eA Oww

1
~ AccaColv), (53 Q)R & B SO O

e V\{v}
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FIG. 1. The time evolution o§ L, and/ - for a typical run of timest = 1000, t= 2000 and = 5000.

the ECA case withCE®=700 andmy/2=m=12. The curves dis-
play S L, and/ ! rescaled by their maximal valueSya,= 159,
Lmax=1133, and/,1,=0.2914. In the inset the whole network at and will never recover. The largeequilibrium is character-
t=5000 (except zero-degree vertigds shown. ized by many disconnected subgraphs of a low average de-
gree. In a chainlike subgraph of sig¢he maximal between-
whered(v,w) is the length of a geodesic betweerandw. ness is of the orders%/2. Accordingly, when a new vertex
As the average geodesic length is infinite when the networfoins two chain-like subgraphs of similar size the between-
is disconnectedas could be the case when an overloadness will increase by a factor around 4, which in many cases
breakdowns has occurredve prefer studying the average is enough to cause a breakdofim Fig. 1 the average time

inverse geodesic lengfl23]: between breakdowns is~5.8 for 6006<t=<7000).
From histograms of the betweenness and the average de-
-1 1 1 D 1 7 gree we can get another perspective on the breakdown. Fig-
~ \d(o,w)/ N(N=1) /S wFpy d(v,w)’ ™ ure2 represents the same model parameters as Fig. 1, but the

histograms are sampled over 500 independent runs. At the
which has a finite value even for the disconnected graph ifarliest timet=1000—around the point when first vertex
one defines H(v,w)=0 in the case that no path connegts reaches the maximal loadCE®=700)—the betweenness
andw. distribution, as well as the degree distribution, shows an
emerging power-law form. When vertices of high between-
. EXTRINSIC COMMUNICATION ACTIVITY ness and degree breakdowso the average degree gets
lower), the number of vertices with an intermediate between-
A single run for the ECA load limit typically follows the ness increases, as shown in Fi¢p)2att= 2000, close to the
time development shown in Fig. 1. The system grows exactlfinal fragmentation. After the final fragmentation has oc-
like the BA model untilCg= C§® for some vertexthis hap-  curred[t=5000 in Fig. Za)], the network approaches steady
pens att~840 in Fig. 1. In this initial stage, the average state and its structure does not change in time significantly,
inverse geodesic length approaches its maximum value vemnd the fraction of vertices with larg€lg is reduced com-
soon, andS andL grow linearly in time as expected. After pare t=2000 andt=5000 in Fig. Za)]. In Fig. 2b), the
reaching its early maximumt4£300 in Fig. 1 /! starts to  change of the degree distribution in time is displayed. With
decrease slowly since the average geodesic length increasesreasingt the maximum degree decreases, but characteris-
in a connected growing network. As the network evolvestic to all configurations before the final breakdoWat t
more vertices are overloaded but those breakdowns of over=5000 in Fig. 2a)] is the existence of a peak in the histo-
loaded vertices in this stage do not spread across the netwogkams at an intermediate, .
but are soon recovered without causing severe damage to the If the preferential attachment in the BA model’'s genera-
whole network (84€t=<2200 in Fig. 3. Finally, through a tive algorithm is replaced by a purely random selection of
series of avalanches the system breaks down into small fragrertices to attach tfi.e., Eq.(1) is replaced byP,=1/N] the
ments of low average degree, characteristic for the largeresultant network is known to have an exponentially tailed
steady statéthis happens arounid~2200 in Fig. 3. Such a degree distributiof15]. Apart from probably being a rel-
behavior has a natural explanation: In the emerging scaleevant model for some evolving networks with an emerging
free network(for t=<1000 in Fig. 1 the vertices with highest exponential degree distribution, the randomly attaching BA
Cg are also those with the highest degfégé—when break- model can serve as a background for studying the effects of
down occurs the average degree decreases. But in a grapreferential attachment.
with fewer edges the geodesics must overlap to a larger ex- Figure 3 shows a typical run with the same parameter
tent, increasing th&€g for less central vertices as well. As values as those of Fig. 1 but with random instead of prefer-
long as only few vertices are dominant the breakdown isntial attachment. Very large vertex breaking avalanches are
limited to these top-end vertices. When the average degree ksiown to occur in BA model networks under other load con-
low enough (so the fraction of central vertices is high ditions (the fiber bundle moddl12]). Thus it is no surprise
enough the system looses the large connected componerthat the network breaks down much faster when it is formed
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almost always coincides with the maximugnandL). Be-
fore the first avalanche some vertices breaks without making
other vertices overloaded. This ability to recuperdte the
case with the preferential attachmenén be interpreted as
follows: When the most central vertex is overloaded and de-
tached, the other vertices are not more loaded than that they
- . . ) can share the load of the additional geodesics. With random
3000 ] 4000 5000 6000 700 attachment, once the first vertex breaks, the others are too
close in centrality to escape from being overloaded.

FIG. 3. A typical run of the BA model with random attachment ~ To investigate then dependence ofS) we average over
instead of preferential attachment. The parameter values are thoseore than 100 independent runs at various values ¢he
of Fig. 1. The curves displag L, and/ "%, rescaled by their maxi- number of edge addings for each new vertaxith an in-
mal values Bya=207, Lma= 2030, and/ 5= 0.2929). creasing average degree, the load is split over more vertices

and thus the network becomes increasingly rokinés effect

by preferential than random attachment. For example, thés dominant for k=m=20 in Fig. 4. But at the same time, a
decay fromS=0.8 toS=0.2 occurs in the the time interval largerm also means that a vertex, in the process of adding
At~550 for random attachment in Fig. 3 wherelis~190  isolated vertices to a connected subgraph will get an increas-
is found for preferential attachment in Fig. 1. The relativeingly high betweenness. These two competing effects cause
robustness from random attachment is also consistent withe maximum of S) at an intermediaten(m= 20 in Fig. 4.
the fact that Erds-Renyi (ER) [24] model networks are more The minimum of(S) nearm= 27 in Fig. 4 can be explained
robust against vertex atta¢kost harmful removal of verti- as follows: WhenCg®*=m(m—1), a new vertex becomes
ce9 than the BA model networki]. overloaded when it attaches its last edge, limitlBgo m

The BA model with random attachment is not equivalent—1. In Fig. 4, this minimum occurs whem=27 since
to the ER model in that all vertices of the fornfexcept the m(m—1)~Cg%{(=700).
initial my) have degre&,=m. However, the vertices of ar-
bitrary large importance present in the BA model with pref-
erential attachment are—just as in the ER model—gone IV. INTRINSIC COMMUNICATION ACTIVITY
when the attachment is random. Thus, since both vertex at- ]
tack and overload breakdown concern disabling the most im- CA, corresponding to the case the average number of
portant vertices, the similarity in behaviors is of little sur- CONNEctions per vertex is constant, is implemented through a
prise. The relative robustness of the networks with randoninéarly increasing maximum betweenness lo&gd*{t)
attachment is also reflected in the maximal valueSahd  =cg“N(t). Them dependence of the time evolution in the
L:  Sya— 159 andL,~=1133 in Fig. 1, in comparisons ICA case is shown in Fig. 5. Unlike the ECA case the maxi-
with Spa= 207 andL = 2030 in Fig. 3. A more interesting mum load ism dependenf CE®= cg®N=cg®{my+t/m)],
feature of the BA model networks with random attachment iswhich causes the increase (@) for small and decreasing
the lack of the second regime discussed in the context of Fign Fig. 5. Just as in the ECA case the networks grown with
1, where the avalanche is limited and the network is able tahe ICA limit are most robust for an intermediate (with
recover. When the attachment is random the first avalanche}®*=5 as in Fig. 5 the most robust networks are those with

-,

L L
0 1000 2000

FIG. 4. Them dependence of the time devel-
opment of(S)—the average size of the largest
connected subgraph for the ECA case Wath™
=700, andmy=2m.

10000
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2500. "
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FIG. 5. Them dependence of the time devel-
opment of(S)—the average size of the largest
connected subgraph for the ICA case wij™
=5, andmg=2m.

M= Mpya~10). The mechanism behind this seemingly simi-loaded eventually, which leads to the situation that less edges
lar behavior is, however, entirely different from the ECA should hold increased loads. In the ICA case, on the other
case. The avalanching breakdown follows the same pattef@nd, it is a very interesting question that why there has to be
as the ECA caséshown in Fig. 1, but not the decrease in an avalanche at all, or, why a stable large connected compo-
performance fom>m,,,,: For some runs a giant component Nent does not form. First we note that for a connected graph
(a connected subgraph of the order of the whole sykstaits
to form, an'd. the network stays disconnected, similarly to the E Ca(v)= E [d(v,w)—1]=N(N—1)(1—1),
larget equilibrium of the ECA case. The frequency of runs  vev weW{v}
where no giant component is formed increases witltaus- (8)
ing the decrease of network functionality fior>m,,,,. Two ) )
runs, one where a giant component is formed and one whehich yields
it is not, are shown in Fig. 6. As seen in Figag the ava-
lanche in the ICA case ?:an be as dramati% as in the ECA {Ca(v))=(N-1)(I —1)smg/>CB(v). ©)
case. This is expected since the relative increase of the maxi- ’
mum load,ACg®/Cg™, during the avalanche that lasts for Consequently, Eq9) implies that the load of the vertex with
At, is given by ACE?YCg®~At/t, which becomes very the largest load in the network increases at least as fast as
small ast increases. In other words, the increase of the maxiapproximatelyN| before the giant component becomes un-
mum load during the avalanche is too slow to stop the globastable. Since the BA network is well known to exhibit the
scale of breakdowns. small-world behavior that’=logN [14,15, we conclude that

The existence of avalanche of breakdowns in the ECAn both ECA and ICA cases the giant component becomes
case appears to be inevitable due to the fixed maximum loagnstable adN becomes larger. The above argument suggests
Cg™: As the network becomes larger more vertices are overthat to avoid the overload breakdowns B§* should scale

at least alN® with a>1 and that ifa<1 (e.g.,a=0 for ECA
T ,;A‘q — L S S s anda=1 for ICA cases in this papgthe giant component
Ly 4 (a)

i
os %’%’12 . I (b) | should break down a¥ becomes larger. If we map this back
; I to the original definition of loadsee Sec. Il B we see that

06 = even in the ICA case the capacitfv )™ must grow(to be
1~ precise it has to grow at least & %, a>1). If the
growth of the network is exponential in tintas has been the

02 case for the Internd27]) the growth of the server capacities
also has to be exponential. Fortunately, this has so far been
0 TE o 15 20 <ioSo. 5 a0 120 25 a0%i0d the case.

Why does a giant component form only sometimes in the
FIG. 6. Two runs with the ICA load limit and parameter values ICA case? Is it a long chain of events or just a singular
m=m/2=12 andcI®™=5. In run(a) a giant component forms, in attachment that establishes a giant component? To under-
(b) no giant component emerges. The curves dispBysand/~t  stand this we need some kind of criterion for a giant compo-
rescaled by their maximal values (@) (Sya=876, Lnx=4354, nent to have formed. The basis of such a criterion is $hat

and/;1=0.2170). scales likeN (we choose thab should grow at least ad/2)

- 08
[

=~ !
0oaf |

02
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FIG. 7. (a) The fractionP g of runs that forms a giant component when the network at tiggequals that of Fig. @ and(b). A giant
component is said to have formed if the conditid®) is fulfilled, i.e., S>N/2 when 864<t<1728.(b) The network of Fig. &) during the
formation of a stable kernel 15 <225 of many vertices sharing the lodd) The network of Fig. €) during the same time. Vertices of
nonzero betweenness are indicated by filled circles. Vertices of zero degree are not displayed. Graph drawing was artediyableage
[25].

over a certain interval. The problem is now to fix the inter-component, and fewer attachments to isolated vertices. This
val: The lower limit should be quite high, so the system haveattachment to the existent connected component works in
time to form a giant component. At the same time the uppefavor of the establishment of a giant component in two ways:
limit must be set before the avalanching breakdowns occurgl) The average degree of the connected component is in-
and this time decreases with decreasim¢see Fig. . As a  creased since both more edges are included and less isolated
trade-off we say that a giant component has formed if vertices are joined. This makes more possible geodesics and
enables more vertices to share the lo&). The raise of
average degree increases the probability of attachment to the
connected component.

The reason why we do not observe any emerging giant
whereN(t)=mg+t/m (and we chooseny=2m). Now we  components in the largelimit is evident from Fig. 8. In the
can monitor the “basin of attraction” of the formation of a large chainlike subgraphisee Fig. &)] dominant in the
giant component in Fig. 6. Figure 7 shows the fractiig:  larget limit, there are many vertices of high betweenness.
of runs that forms a giant component when the network afoining two such graphs gives a large increase in between-
time tgarequals that of Figs. (@) and &b). From this we see ness to most vertices, as opposed to Fig) 8here an ad-
that over a time of aroundt=50 the formation of a giant ditional load can be shared by many vertices, and the much
component(GC) goes from a probabilityPc~0.3 to Pgc  shorter average geodesic length leads to a much lower total
~0.8; a favorable sequence of attachments aver50 is  increase ofCy. A stable kernel is of course not forbidden to
thus needed to form a stable kernel, or starting point, for théorm, but the probability of formation decreases with time
formation of a giant component. The probability of a stable[as seen in Fig. (8)]. Whether or not the probability of a
kernel to form decays fast withgoing from~20% to~1%  stable kernel to form as—< is less than one is an interest-
during the initial 500 time steps. In Fig() we can see the ing open question.
formation of a stable kernel, that raiseg: from 0.3 to 0.8, To proceed we investigate the effect of preferential attach-
whereas Fig. (€) shows the same time evolution in a casement for the formation of a giant component. For the random
where no giant component forms. In the formation of theattachment case giant components form very seldom, the rea-
stable kernel we see many attachments to the connectexn is that the stable kernels are more likely to form with

N
S>§ in the interval  3ng=<N(t)<6my, (10

1400

o 2 (b) 1200} o (c) ;
o © ool o0 | FIG. 8. (a) The largest con-
gc»,’;).g\o,o ey A nected subgraph at=385 in Fig.
o- Z,3°é‘° o 0% (& sor From graph (a) & 6(a). (b) The largest connected
°e ®qoo 600 | o 1 subgraph at=10 000 in Fig. 6b).
é jo, From graph (b) O
8, ° w0l o ] (c) shows scatter plot of between-
g s0l © ° ] ness vs degree in the graphs dis-
° % HE 3 L85 »*® ®° played in(a) and (b).
¢ 0 Lt L + ¥ v
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v
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T P T T ¥ the network(the ECA casg and one where the average num-
08 j‘” N | ber of connections per vertex is constéfie ICA case
' , We find that for both the ECA and ICA cases overloading
o6 f . # preferential atiachment may cause breakdown avalanches. At a critical point these
CL8 ’ O random attachment avalanches will fragment the network completely and it will

never recover. The mechanism is that the vertices with the
highest loads are also the vertices with the highest degrees,
and accordingly removing such vertices will thus decrease
the average degree mostly and increase the betweenness on
other vertices maximally. In the large time equilibrium we
find that the network consists of many isolated chainlike
FIG. 9. The fractionPgc of runs that forms a giant component ¢|ysters.

for preferential and random attachment as a functiormofThe Even in the seemingly less restricted ICA case we find
decay of the preferential-attachment curvenas 0 is due to early {3t the network will eventually become fragmented, and
avalanchesthe increase of such for decreasimgnakes the rule of thus that for the network to be connected the capacity of the
thumb criterion Eq(10) inapplicable form<5, thus these are not o ices to relay connections have to increase with the size of
showi. the network. Even if the congestion of computer network
traffic will result in a slowing down of the servers, rather

preferennal 'attachment, since then attachm'ent are qontﬁan a complete breakdown, we anticipate that this will be a
me_unly to highly connected_ areas that are likely St."’?rt'ngforoblem in the Internet if the exponential increase of com-
points _for a stab_le kernel. Figure 9 shows t_h_e probability o puter performance stalls but not the growth of the number of
formation of a giant componefiby the condition Eq(10)]

. ! Intern ites. Overflow control is implemen in man
for preferential and random attachment. For growngnd ternet sites. Overflow control is implemented any

- : mmunication network h telecommunication net-
random attachment the probability of giant component for—CO dmcation NEWOTks, such as telecommunication ne

! . . ) : works[26] and to some degree in large-scale Internet routin
mation Pg¢ is strictly decreasing. This can be understood [26] J g 9

) d solated vert b tod rotocols such as the Border Gateway prot¢2d]. We sup-
Since more and more 1solatéd Vertices become CONNected gaqq that these kind of overload control strategies can be

E 'nizef‘sensd tc?ius IeadéngbtovtheFu:ner de\:ech[ipTe?tt Sﬁrin ' ptimized, and centers of potential overload be removed by a
9. Ac) a scussed above. For preterential ataChmenty o study of the network geometry.

the decrease occurs @@= 8. In the largem limit, the prob- In the ICA case we find that a giant component not nec-

ability of the momentary higher-than average increase of th% sarily forms every run, and that a particularly stable con-
average degree needed for the formation of a stable kernﬁ uration has to be formed during a short period of time to

decreases; thus the decrease for large trigger the emergence of a giant component. Furthermore,

preferential attachment greatly increases the probability of a

V. SUMMARY AND CONCLUSIONS giant component to form compared to random connection.

We have used the BA model with the preferential attach-ThiS r_night be a further explanation to prefe_rential attach—

ment and investigated the development of networks whergent in .natural systems such as the metabolic networks dis-
the vertices might break down due to overload. The load Wagussed in Ref{28].

defined in terms of the betweenness centrality by careful ar-

guments. We considered two cases of load limitation: One

corresponding to the fact that the average number of connec- The authors acknowledge support from the Swedish Natu-

tions per vertex is increasing with the number of vertices ofral Research Council through Contract No. F 5102-659/2001.
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